

USER MANUAL FOR EXECUTING SQUASH DSLs
IN INTELLIJ COMMUNITY IDE

August 2019
Version 1.0.8

[image: logo_henix]

[image:]		 User guide for SQUASH TF ICI plugin
[image:]		User guide for SQUASH TF ICI plugin

© Henix. Tous droits réservés Henix, 23-25 avenue du Docteur Lannelongue 92120 Montrouge

© Henix. Tous droits réservés Henix, 23-25 avenue du Docteur Lannelongue 92120 Montrouge 		 2

Document Revisions

	Date
	Version Number
	Document Changes

	01/04/2019
	0.1
	Initial Draft

	05/04/2019
	0.2
	Need Image update for Test DSL Autocompletion feature

	08/04/2019
	0.3
	Ready for Validation

	23/04/2019
	0.4
	Insert “Squash Build Configuration” section

	26/08/2019
	0.5
	Replace all “command” words with “basic instruction”
Insert some new syntax rule notes for each DSL
Insert METADATA section in Squash Test script
Update “Related documents” link to: https://squash-tf.readthedocs.io/en/latest/
Remove the Limitation saying that we can only write characters matched this regex: [a-zA-Z0-9\/._-] for a value.
Modifying the section 4.3, 4.4, 4.5
Modifying the chapter names
update new behaviors for Macro auto-completion mechanism

	27/08/2019
	0.6
	Update the syntax rule for the Macro value

	13/09/2019
	0.7
	Update “Create configurations for Squash TF builds” section

	18/09/2019
	0.8
	Update “list” and “check-metadata” goals
[bookmark: _GoBack]Update auto-completion “known limitations”

	
	
	

	
	
	

Table of Contents
1	Introduction	3
1.1	Scope and Purpose	3
1.2	Squash DSL background - Related documents	3
1.2.1	Macro DSL	3
1.2.2	Test DSL	4
1.2.3	Related documents	5
1.3	Overview – Squash TF plugin features	5
2	Plugin installation into ICI	6
2.1	Install plugin from disk	6
2.2	Install plugin from IntelliJ marketplace	6
3	Create a Squash project in ICI	7
4	ICI Squash TF plugin features	9
4.1	Squash DSL file template with descriptions	9
4.2	Squash DSL syntax coloration	10
4.2.1	Macro DSL	10
4.2.2	Test DSL	10
4.3	Squash DSL Annotation	11
4.3.1	Macro DSL	11
4.3.2	Test DSL	13
4.4	Squash DSL autocompletion	15
4.4.1	Macro DSL	15
4.4.2	Test DSL	18
4.5	Squash DSL line marker/navigation	19

[bookmark: _Toc5609511]Introduction
[bookmark: _Toc5609512]Scope and Purpose
[bookmark: _Hlk5022278]This document is a User Guide document for use by Squash projects. It provides guidance, explanations and illustrations which is intended to assist the writing of the Squash Domain-Specific Languages (DSLs) in the IntelliJ Community Integrated Development Environment (ICI).
It is also useful background reading for anyone involved in developing, monitoring or executing a Squash Test project/system.

[bookmark: _Squash_DSL_background][bookmark: _Toc5609513]Squash DSL background - Related documents
There are two Squash DSLs: Macro DSL used in Squash Macro file and Test DSL used in Squash Test script.
[bookmark: _Macro_DSL][bookmark: _Toc5609514]Macro DSL
· Definition: Macro DSL is a specific language that constitutes a Squash Macro file (.macro extension).
· Squash Macro file is used in a Squash project (in ‘shortcuts’ folder) to define the content of a Macro line which can be used in a Squash Macro file or a Squash Test script (.ta extension).
	Figure 1 - Structure of a Squash project
· Squash Macro file

· Squash Test script
	[image:]

· There are 3 main components in a Squash Macro file:
· Signature: the syntax definition of a Macro (note: while the name of a macro file can be different from its signature defined in its content, the identifier of a macro used for its invocation is the signature). It must be the first line of the Macro file.
· Separator: separating the signature and the body of a macro file at must be placed in the next line right after the macro signature.
· Body: a set of Squash instructions that will be executed by the Squash engine upon their appearance order
· Squash instruction: either a basic instruction line or a Macro line

	[bookmark: macro_file_structure]Figure 2 - Structure of a Squash Macro file

	· Signature
· Separator
· Body

· Instruction line
· Macro line
	[image:]

· [bookmark: macro_line]Macro line is the shortcut of a Squash instruction set which can be called from a Squash Test script or a Squash Macro file. Its syntax must respect one signature structure defined in a Macro file. For example:
· # ASSERT XML xml_path IS {valid} USING SCHEMA {{xsd_path}}
Yellow: macro keywords
Green: user input values/file paths
Note: For a macro line to be recognized, the syntax and position of its keywords must be completely respected. However, there are no specific rules for the file path or input values.

· [bookmark: command_line]Basic instruction line is one of these 6 templates:
· DEFINE $(raw data) AS {nameInTheContext}
· LOAD {path_To_Resource} [FROM {resourceLibrary}] [AS {nameInTheContext}]
· CONVERT {resourceToConvert} TO <Category>(<Conv>) [USING {config}] AS {convertedResource}
· EXECUTE <Cmd> WITH {resource} [ON {target}] [USING {config}] AS {result}
· ASSERT {resourceToTest} (IS | HAS | DOES) <Asr> [(WITH | THAN | THE) {expectedResult}] [USING {config}]
· VERIFY {resourceToTest} (IS | HAS | DOES) <Asr> [(WITH | THAN | THE) {expectedResult}] [USING {config}]
[...] : optional
(…|…) : choose one in group
Red: instruction head keyword
Blue: instruction keyword
Green: user input value/file path
Rose: engine component identifier

· Comment line (starting with “//”) and empty line (line containing nothing or only spaces/tabulations) can be inserted anywhere after the Separator.

[bookmark: _Toc5609515]

Test DSL
· Definition: Test DSL is a specific language that constitutes a Squash Test script (.ta extension).
· Squash Test script is used in a Squash project (in ‘tests’ folder or its subfolder) to define the content of a Squash test case (see Figure 1 - Structure of a Squash project).
· There are 1 informative section and 3 execution sections (phases) in a Squash Test script:
· METADATA (informative section) (optional)
· SETUP (optional)
· TEST (required)
· TEARDOWN (optional)
· In each section is a set of Squash instructions that will be executed by the Squash engine upon their appearance order.
· Squash instruction: either a Basic instruction line or a Macro line (see Macro DSL section)
· Comment line (starting with “//”) and empty line (line containing nothing or only spaces/tabulations) can be inserted anywhere.
	Figure 3 - Structure of a Squash Test script

	· METADATA section

· SETUP phase

· TEST phase
· TEARDOWN phase
	[image:]

[bookmark: _Toc5609516]Related documents
A wiki for more detailed information about SQUASH DSLs/project and their components can be found here.

[bookmark: _Toc5609517]
Overview – Squash TF plugin features
To facilitate the employing of Squash DSL components during the creation/modification of a Test script or a Macro file that is opened in an ICI, the Squash TF plugin has been integrated into ICI (version 2018.3.2 or later) to provide the following features:
Squash DSL file template with descriptions
Squash DSL syntax highlighting
Squash DSL syntax validation
Squash DSL component autocompletion
Squash DSL line marker/navigation

[bookmark: _Toc5609518]Plugin installation into ICI
Requirement:
· IntelliJ Community IDE (version 2018.3.2 or later recommended)
· JAVA JDK 1.8
· MAVEN 3.5.0
[bookmark: _Toc5609519]Install plugin from disk
The ICI Squash TF plugin can be downloaded here.
Follow the instructions here to install the plugin archived file to user ICI:
[image:]
Figure 4 – Install plugin from disk for ICI

[bookmark: _Toc5609520]Install plugin from IntelliJ marketplace
To be updated in next versions

PLUGIN INSTALLATION

[bookmark: _Toc5609521]Create a Squash project in ICI
[image:][image:]For anyone who uses ICI for the first time, when launching ICI after the installation, a window will appear to ask for creating or importing a project (Figure 5).
	 Figure 5 – ICI first launching interface 	 Figure 6 – Choosing project template
By clicking on “Create New Project” option, a new window appears for choosing a project template (Figure 6). Choose “MAVEN” as template for creating a Squash project.
[image:]
Figure 7 – Maven archetype configuration for Squash project

Project SDK: JAVA 1.8 is recommended. Check: “Create from archetype” option and Enter the following values:
· Archetype Group ID: org.squashtest.ta
· Archetype Artifact ID: squash-ta-project-archetype
· Archetype Version: the last Squash-TA version (ex: 1.13.0-RELEASE)
· Repository URL: http://repo.squashtest.org/maven2/releases/
User can then define the Maven properties: GroupId, ArtifactId, Version, indicate the MAVEN home directory (version 3.5.0 is recommended) as well as the name and location for his/her project.
Typically, with a Maven BUILD SUCCESS, the Squash project is ready for experimenting all the ICI Squash TF plugin features.

SQUASH PROJECT IMPORTATION

[bookmark: _Toc5609522]Create configurations for Squash TF builds in ICI
To create/insert a build for a project in ICI, click on the Build Configuration option in the right-hand part of the ICI and choose Add/Edit Configurations… and choose the MAVEN options.
[image:]

Run all tests
In Parameters section > Command line option, insert this command:
squash-ta:run -Dlog4j.configurationFile=log4j2.xml
[image:]
Note: Don’t forget to indicate the location for Maven home directory option in General section (version 3.5.0 recommended) !

Run all tests DEBUG
In Parameters section > Command line option, insert this command:
squash-ta:run -X -Dlog4j.configurationFile=log4j2.xml

Run selected test(s)
In Parameters section > Command line option, insert this command:
squash-ta:run -Dlog4j.configurationFile=log4j2.xml -Dta.test.suite=”insert the Test file path manually”

For example: squash-ta:run -Dlog4j.configurationFile=log4j2.xml -Dta.test.suite=simple.ta
Note: The file path can be absolute or relative to the project “src\squashTA\tests” folder.

Run selected test(s) DEBUG
In Parameters section > Command line option, insert this command:
squash-ta:run -X -Dlog4j.configurationFile=log4j2.xml -Dta.test.suite=”insert the Test file path manually”

Run test list
In Parameters section > Command line option, insert this command:
squash-ta:run -Dlog4j.configurationFile=log4j2.xml -Dta.test.suite=”insert the list of Test file paths manually, separated by comma (,)”

List tests
In Parameters section > Command line option, insert this command:
squash-ta:list -Dlog4j.configurationFile=log4j2.xml [-DdisableMetadata=true]

Check-metadata
In Parameters section > Command line option, insert this command:
squash-ta:check-metadata -Dlog4j.configurationFile=log4j2.xml
PLUGIN FEATURE: DSL TEMPLATE
[-Dtf.metadata.check=[valueUnicity]] [-Dtf.metadata.check.keys=[KEY,missingOne,abc,123]]
ICI Squash TF plugin features
[bookmark: _Squash_DSL_file][bookmark: _Toc5609523]Squash DSL file template with descriptions
The Squash TF plugin provides in ICI two DSL templates for Squash users to have a look at how a Squash Macro file or Test script is constituted. It presents also the name, the position as well as the color of every component of each DSL.
In File menu, choose Settings…EditorColor Scheme: then choose Squash Macro File option to view the Squash Macro File template.
[image:]
Figure 9 – Squash Macro File template
· By clicking on a component name listed in the upper window, user can observe its color description in the right column and its position indicated in the lower Squash Macro file sample.
· Clicking on an element in the file sample also gives the user the corresponding information in the upper and right windows.

The same behaviors are also provided in the Squash Test Script template.
[bookmark: _Toc5609524]Squash DSL syntax highlighting
As observed in “Squash DSL template” section, each Squash DSL owns a specific list of components. In ICI, each of these latest is identified depending on its position in the file content and is respectively assigned to a unique color (read here for more detailed information).
[bookmark: _Toc5609525]Macro DSL
[image:]

[bookmark: _Toc5609526]Test DSL
[image:]

PLUGIN FEATURE: DSL SYNTAX COLORATION

[bookmark: _Squash_DSL_Annotation][bookmark: _Toc5609527]Squash DSL Validation
Also integrated in the ICI by Squash TF plugin is the real-time-checking capacity. In fact, whilst a Squash DSL file is opened and being composed, the plugin checks its current properties/content and creates an Annotation if needed.
[bookmark: _Toc5609528]Macro DSL
· If a Macro file is not in the project “src/squashTA/shortcuts” folder, its whole content will be highlighted with an Error Annotation. Furthermore, all other features provided by the plugin such as syntax checking, auto-completion… will NOT be correctly supported.
[image:]
· A macro file must control ONE (and only ONE) macro signature and ONE (and only ONE) separator. In a Squash macro file, the signature must be the first line followed by the separator. Otherwise it will invoke an Error Annotation. For example:
[image:]
[image:]
[image:]
[image:]
·

· If the current working macro signature template has already been used (either in the Squash framework or in user working project “shortcuts” folder), an Error Annotation will appear.
[image:]
· In the macro file body, there are 3 different kinds of lines: comment line, basic instruction line and macro line. While there is no rule for a comment line except for that it must start with a “//”, a macro line whose keyword template doesn’t match any Macro signature (either in the Squash framework or in user working project “shortcuts” folder) will trigger an Error Annotation.
[image:]
· If a macro line keyword template matches more than one Macro signature, a Warning Annotation will be raised.
[image:]
· If a basic instruction line doesn’t match any templates, an Error Annotation together with a tooltip to propose the 6 Squash basic instruction templates will be proposed.
[image:]
· If a basic instruction line matches a template but contains undefined built-in value(s), an Error Annotation will show.
[image:]
[bookmark: _Toc5609529]Test DSL
· If a Test file is not in the project “src/squashTA/tests” folder, its whole content will be highlighted with an Error Annotation. Furthermore, all other features provided by the plugin such as syntax checking, auto-completion… will NOT be correctly supported.
[image:]
· A test file must control ONE (and only ONE) TEST phase. Other sections are optional but also at most 1 section for each. The right order must be: METADATA > SETUP > TEST > TEARDOWN.
[image:]
· In each phase of the Squash Test script, there are 3 different kinds of lines: comment line, basic instruction line and macro line. While there is no rule for a comment line except for that it must start with a “//”, a macro line containing a keyword list that matches no existing Macro signature (either in the Squash framework or in the working project “shortcuts” folder) will trigger an Error Annotation.
[image:]
· On the other hand, if a macro line matches more than one Macro signature, a Warning Annotation will be raised.
[image:]

· If a basic instruction line doesn’t match any templates, an Error Annotation together with a tooltip to propose the 6 Squash basic instruction templates will be proposed.
[image:]
· If a basic instruction line contains undefined built-in value(s), an Error Annotation will appear.
[image:]

PLUGIN FEATURE: DSL ANNOTATION

[bookmark: _Toc5609530]Squash DSL component autocompletion
One of the most effective ways to facilitate the usage of a DSL is importing an autocompletion (AC) system; and the Squash TF plugin does provide one in ICI. Based on each precise context that the user cursor is currently in, a list of appropriate Squash DSL components will be proposed when the “ctrl + space” combo-key is taped.
[bookmark: _Toc5609531]Macro DSL
· If an AC is demanded while the current Squash Macro file does not have a macro signature followed by a separator yet, a proposal for the missing part(s) will consequently be raised. User can then modify the given template to obtain his/her desired Macro signature.
[image:]
[image:]
[image:]
· [bookmark: content_autocompletion]AC in macro body: With a valid macro signature and separator, when an AC is asked in the macro body, depending on each context (i.e. the current content of the working line) is proposed a specific Squash DSL template/component.
[image:]
· As seen in the picture above, when an AC is made at the beginning of an empty line, a “#” will be proposed for starting a macro line. Moreover, 6 Squash basic instruction line templates as well as their separated HEAD KEYWORD are also provided to initiate a new basic instruction line.
· If the user chooses to start with a specific basic instruction HEAD KEYWORD and then asks for an AC at the following VALUE position, a tooltip be proposed to indicate that a value identifier or file path should be inserted. In next versions, real and appropriate values (selected by value type upon the current AC position) will be proposed.
[image:]
· As the first pair CMD HEAD KEYWORD – VALUE is complete, the plugin will then propose all CMD KEYWORDs of that basic instruction template which are not presented in the current line yet.
[image:]
· Like the CMD HEAD KEYWORD case, only a tooltip will be proposed if an AC is asked at the value position of a CMD KEYWORD.
[image:]
· If an AC is required at the position that waits for a Squash engine component identifier, a list of appropriate values will be raised.
[image:]
· When a line starting with “# ” is on an AC demand, all the available macro signature templates and their first fixed part component will be proposed. The ones coming from the Squash framework will be in bold style.
[image:]
· Note:
· Values proposed in an AC now is just a pseudo-value name that is defined in the matched macro signature
[image:]
[bookmark: _Toc5609532]

Test DSL
All features provided for an AC in a macro line and a basic instruction line of a Squash Test script are the same of a Squash Macro file. The only difference between the two Squash DSL AC is that in a Squash Test script, instead of providing ACs for signature/separator, a PHASE AC is added.
· If the current Test script doesn’t have a METADATA section or a PHASE among SETUP, TEST and TEARDOWN phases, a suitable proposal will be invoked upon the cursor current position.
[image:]
[image:]
[image:]
[image:]
PLUGIN FEATURE: DSL AUTOCOMPLETION
· AC in Phase content: When a phase is well defined, all the ACs for a macro line or a basic instruction line are the same as in a Squash macro file. (see here)
[bookmark: _Toc5609533]Squash DSL macro line marker/navigation
· When the macro signature of a Squash Macro file as well as a macro line in both two Squash DSL file is read by the ICI Squash DSL plugin, its Keyword template will be compared with all the existing macro signatures. If the template is found matched a Macro signature, a marker will be created for this current line.
[image:]
· When the macro template comes from the Squash framework, a message is sent to user when his/her cursor is on the marker.
[image:]
· In case of ‘project custom macro’, the marker proposes both a message and a navigation to the concerned Squash Macro File. Click on the link and you will be navigated to the macro file that defines this template.
[image:]
· If more than one macro file in the project is found, a list of navigations will then be created.
[image:]
image3.png
v BN squashTA
BN repositories
BN resources
v BN shortcuts
sutomacro
@ sameTilemacro
BN targets
v Bmtests
v Eujunit
Sjunittestia

Stettn

image4.png
KEY1 {paraml} REY 2 {param2} KEY 3

LOAD path To_Resource AS nameInTheContext FROM resourceLib
CONVERT resourceToConvert TO file AS convertedResource
ASSERT resourceToTest IS valid WITH expectedResult USING config

I

ASSERT XML xml path IS (valid) USING SCHEMA {(xsd path}}

image5.png
|eracara -
//first cmt
xey

key2 : valuel
: value2

//1ast emt

key3 : value3

seTup :
DEFINE $(rav_data) AS ddhg 1
LOAD dwfgsd AS §(raw_data) FROM $(av_data (azerazer))

TEST :
CONVERT § (raw_data) To xml (structured) AS convertcdResource USING §(aw_data (azerazer))
EXEGUTE cleanup WITH w_data ON §(aw_data (azerazer)) AS §(raw_data) USInG wxve

TEARDOWN :
ASSERT raw_data Is contain WITH raw_data USING $(rav_data)

VERIFY resourceToTest Has valid WITH §(av_data (azerazer)) USing config

ASSERT $(aw_data (azerazer)) STDERR DOES NOT CONTAIN [regex}

image6.png
- Install plugin from disk

1. In the Settings/Preferences dialog (Ctrl+Alt+S), select Plugins.
2. In the Plugins dialog, click & and then click Install Plugin from Disk.
3. Select the plugin archive file and click OK.

4. Click OK to apply the changes and restart the IDE if prompted. [y

image7.png

image8.png
IntelliJ IDEA

+ Create New Project
I mpertPrject
B Open

H Check out from Version Control v

2 Configure v GetHelp v

image9.png
22 Project SDK: - New.
i |

Android V| Create from archetype Add Archetype.

Intelli Platform Plugin

W Gradle

appfuse-basic-struts
appfuse-basic-tapestry.
appfuse-core

Groovy d Archetype

K Kotiin

Empty Project

Groupld orgsquashtestta

Artifactid squash-ta-project-archet,
Version 1120-RC1

Reposiory(optional) | bitp/reposquashteston

spring-osgi-bundie-archetype
squash-ta-project-archetype
tynamo-archetype
tellurium-junit-archetype

VY YYYYYYYYYYYVYYVYYVYYVYY

tellurium-testng-archetype

image10.png
I quan.tatests) BN src) B squashTA) Ml tests | simplecta

HPoject + o=
quan tatests C\Uses\atan\Destop\taoolbox

o 1i Project

File Edit View Navigate Code Analyze Refactor

> M ides
> B setings
v
v squashTA
B repositories

v

I resources
I shortcuts.
™ targets
I tests.
» I other
» B 5QTA-298
S Mantis 1958 fipts
S Mantis 1958 ssh sftpts
S setupts
@ simpleta

>
>
>
v

//This is the
Metadata

Build Run Tools VCS Window Help

mment to test

i

B A [Add Confgurtion..
3

0
x

BN

usnew 3

PIING U 36

image11.png
un/Debug Configurations

- P

Neme: | Run all tests Share] Allow paraliel un
¥ 111 Maven

Mtisttests Parameters General Runner Logs

IMRun all tests DEBUG

MRun alltests Working directory: C/Users/gtran/IdeaProjects/intelj-plugin-project

IM1Run selected test(s) DEBUG
M1Run selected test(s)
MRun test it Profiles (separated with space):
> F Templates

Command line: squash-tairun -Dlogd].configurationFile=log42xml

Resolve Workspace artifacts

image12.png
ar

> Appeajgnce & Behavior
Keymap
v Editor
> General
Font

¥ Color Scheme
General
Language Defautts
Color Scheme Font
Console Font
Console Colors
Custom
Debugger
Diff & Merge
ves
Java
Android Logeat
EditorConfig
Grammar-Kit BNF
Groovy
HIML
JFiex
JSON
Kotlin
Properties
RegExp
Simple

T

Squash Test File
XML
Xpath
s

Editor > Color Scheme > Squash Macro File

Scheme: | Darcula v %

Built-in Value
Command Key
Command Value
Comment

Macro Line Key
Macro Symbol
Macro Title Key
Macro Title Param
Macro Value
Separator

MACRO_KEY1 MACRO_KEY2 MACRO_KEY3
5
4
DEFINE as
LoAD FROM as
CONVERT TO xml(xslt) AS
EXECUTE execute WITH oN USING
VERTFY IS similaire WITH
ASSERT XML s USING SCHEMA

Bol

Italic

Foreground
Background
rror stripe mark
ffects

Bordered

] Inherit values from:

Identifiers~Function declaration
(Language Defaults)

MACRO_KEY4

as

oK Cancel

image13.png
// Comment line
SETUR
DEFINE §(raw_data) AS nameInTheContext

4 ASSERT XML (xml_path) IS (VALID} USING SCHEMA {xsd_path}

TEST :

// comment line

LOAD 123 FROM repo AS xyz

CONVERT rescurceToConvert TO xml USING config AS convertedResource

EXECUTE pause WITH Res ON Tar USING config AS result

TEARDOWN :
ASSERT resourceToTest DOES contain THE expectedResult USING config

VERIFY resourceToTest IS equal WITH expectedResult USING config
// comment lind

image14.png
Eile Edit View Navigate Code Analyze Refactor Build Run Jools VCS Window Help

I squash-test-1) B src) BN squashTA) 8 wrong-place-macromacro B A | Add Configuration..
& Project v @ T & — @ testMacroDSL S testTestdSL + _) wrong-place-macro.macro
v I squash-test-1 Ci\Users\qtran\ldeaProjects\squash-test-1 1 # THIS | A_{custom} MACRO o

> M ides
v
v B squsshT
:“""""5 DEFINE §(raw data) AS nameInTheContext
v Bnshortcuts
8 st LOAD (path To Resource) FROM resourcelLibrary
B targets
v Bmtess ASSERT resourceToTest IS equal WITH expectedResult USING config
Prp—
8 wong-place-macromacro CONVERT resourceToConvert TO xml(structured) USING con
squash-test-Timl
>l External Librares EXECUTE putFolder WITH Res ON Tar USING Fonfig AS result
D Scratches and Consoles:

“This Squash Macro File should be placed in the ‘project/src/squashTA/shortcuts' folder to enable syntax highlighting, autocompletion and other Squash plugin features.

image15.png
testMacroDSL S testTestDSL {8 wrong-place-macro.macro

. | SauashacroTokenType COMMENT,SqusMacoTokenType CRL orSqusshacsTokenype SYMBOL execd got =

image16.png
B testMacroDSL S testTestDSL < wrong-place-macro.macro

KEY1 (paraml} KEY 2 m2) KEY_3

SquashMacroTokenType SEPARATOR expected

image17.png
B tesiMacroDSL S testTestdSL [wrong-place-macro.macro

REY1 aml} REY 2 KEY_3
KEY1 (paraml) KEY 2 KEY 3 | squashMacroTokenType.SEPARATOR expected, ot

. o v

image18.png
Stestta x _ tymacio X
MACRO_KEY_1

ml MACRO_KEY 2

<content line>, TAMacroTokenTypeCOMMENT or TAMacroTokenTypeEND_LINE expected, got

image19.png
“This Macro signature already exists

image20.png
1
2 4 RKEY1 {paraml) KEY 2 {param2) KEY_3 {param3}

3

1 =

5

6 EXECUTE execute WITH resource ON target AS result USING config

e

8 # ASSERT XMLS {xml_path} IS {validation}JUSING SCHEMA {xsd _path} _|
s

10

1

image21.png
4 RKEY1 {paraml) KEY 2 {param2) KEY_3 {param3}

=

EXECUTE execute WITH resource ON target AS result USING config

image22.png
LoAd ftp\csvl AS bu\Ndle.file
CONVeRT bu\Ndle.file TO bundlc

/108D wITH % CONVERT resourceToConvert} TO <{jgtegory>(<Conv>) [USING {config}] AS {convertedResource}
//spESDESDE % DEFINE S(raw data) AS {namelnTheContext}
% EXECUTE <Cmd> WITH {resource} ON {target} [USING {config}] AS {result}
7 LOAD {path To_Resource) [FROM {resourceLibrary}] [AS {namelnTheContext]
- % VERIFY {resourceToTest} (IS | HAS | DOES) <Asr> [(WITH | THAN | THE) {expectedResult}] [USING {config}

LoaD22 ftp/

.xml TO XML myName

TEARDOWN :

image23.png
ASSERT resourceToTest IS equal USING config
CONVERT resourceToConvert TO iml(structured) USING config AS convertedResource

EXECUTE putFolders WITH resource ON Tar USING config AS result

image24.png
& Project v © T B — _8 wrong-place-testta -

v I squash-test-1 CUsers\qtraniIdeaProjects\squash-test-1 // Comment
> M idea H SETUP_:|
v s
7 [DEFINE $(raw_data) AS nameInTheContext
BN repositories
B TEST :
v B shortcuts S
'] ” LOAD 123 FROM repo AS Xyz
some sgnature macro
B testMacroDSL
BN targets CONVERT resourceToConvert TO xml USING config AS convertedResource
v D tests
S testTestDSL. ASSERT resourceToTest DOES contain THE expectedResult USING confi
@ wrong-place-macro.macro
— (et TEARDOWN :
% squash-test-Timl # ASSERT XML (xml path) IS_VALID USING SCHEMA (xsd path}

» llli External Libraries
[r——— ThisSqush Test Srpt should be laced i the project/src/squashTAVtests folder o ensble syntas ighlighting, autocompleion and other Squash plugin festures.

image25.png
S testTestDSL

SETUR :
This Squash Test Srpt MUST have ONE (and ONLY ONE) TEST phase.

image26.png
S testTestDSL

1 SETUP :

TEST

LOAD path_To_Resource FROM resourceLibrary AS nameInTheContext

VERIFY XML {xml_path} IS VALID USE SEHEMA {xsd_path}

'No match with existing Macro found

image27.png
SETUP :

TEST :
LOAD path_To_Resource FROM resourceLibrary AS nameInTheContext

L R L

image28.png

image29.png
4 KEYL (paraml) KEY 2 (param?) KEY_3

Lo W N e

image30.png

image31.png
KEY 2

ram2} RKEY_3

I —

CONVERT

CONVERT resourceToConvert TO xml(structured)
EXECUTE execute WITH resource ON target AS re...

LOAD pa:
ASSERT
VERIFY
DEFINE
LoD

ASSERT
DEFINE

th_To_Resource
resourceToTest
resourceToTest
$(raw_data) AS

FROM resourceLibrary A&s..
IS valid WITH expectedR...
IS valid WITH expectedR...
nameInTheContext

image32.png
4 RKEY1 (paraml} KEY 2 {param2} KEY 3

R R

image33.png
S e W N e

4 RKEY1 (paraml} KEY 2 {param2} KEY 3

CONVERT resourceToConvert AS convertedResource

image34.png
B sutocompletion.macro
REYL

ml) KEY 2

5 CONVERT resourceToConvert

usTNG | 25 convertedResource

image35.png
B autocompletion.macro

KEYl {paraml} KEY 2 ram2} KEY_3

B CONVERT resourceToConvert TO | AS convertedResource

file(param.relativedate)

csv (structured)
bundly (unchecked)
directory(filesystem)
properties (structured)
script.java (compile)
xml (structured)

image36.png
KEY_3

ASSERT XML {xml_path} IS {validation} USING ..
ASSERT XML

KEY1 {paraml} KEY 2 {param2} KEY_3

REY1

LOAD {file name} TO XML DATASET {converted n.
LOAD

VERIFY XML {xml_path} IS VALID USING SCHEMA ..
VERTFY XML

image37.png
S first-testta
am2} KEY_3

EXECUTE execute WITH resou: et AS result USING conf.

@

VERIFY XML

{xml_path}

image38.png
SETUP :

Dot space and some other keys wil aso closethis ookup and be insered nto edor

TEST :
10AD hqdnfjq AS sdfgsdf

//xvnbuwxcby, wxch cvwxw

image39.png
S first-testta

image40.png
S first-testta

cts\intelj-plugin-project\src\squashTA\shortcuts\autocompletion.macro.

TEST :

image41.png
B sutocompletion.macro @ same-name.macro _ 8 first-testta

TEST :

LOAD path_To_Resource FROM resourceLibrary AS.
EXECUTE

TEARDOWN, ©

LOAD

image42.png
Sitestta x JEIHMAGONE @ totally-same-name-ta-macro.macro X
MACRO KEY 1 param 1
>

DEFINE §(raw_data) AS nameInTheContext

@ | # ASSERT XML xml path IS_VALID USING_SCHEMA xsd _path

5 @ |# mhat is a macro

image43.png
8 sample shortcutmacro S first-testta
SETUP :

3 TEST :

B # LOoAD sample-dataset.xml TO XML DATASET dataset

£ et 1

3

_path) IS VALID USING SCHEMA (xsd_path}

image44.png
ﬁwmmmwmﬁe

VERIFY XML 1

ath

L. xml

IS VALID USING SCHEMA

TO XML DATASET dataset

xs

image45.png
B — Stetta Bece 1 B totallysamenameta-macio.macro

ntelli-tary 1 # MACRO_KEY_1 param 1

=

DEFINE §(raw_data) AS nameInTheContext

ASSERT_XML xml_path IS_VALID_USING_SCHEMA xsd_path

That is a macro C:/Users/qtran/IdeaProjects/test—intelliJ-ta-plugin/src/squ

image1.png
renix

image2.png

